Beta-type functions and the harmonic mean

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant Mean Value Property and Harmonic Functions

We give conditions on the functions σ and u on R such that if u is given by the convolution of σ and u, then u is harmonic on R.

متن کامل

Harmonic functions via restricted mean-value theorems

Let f be a function on a bounded domain Ω ⊆ R and δ be a positive function on Ω such that B(x, δ(x)) ⊆ Ω. Let σ(f)(x) be the average of f over the ball B(x, δ(x)). The restricted mean-value theorems discuss the conditions on f, δ, and Ω under which σ(f) = f implies that f is harmonic. In this paper, we study the stability of harmonic functions with respect to the map σ. One expects that, in gen...

متن کامل

Best Approximation in the Mean by Analytic and Harmonic Functions

For n ≥ 2, let Bn denote the unit ball in R, and for p ≥ 1 let L denote the Banach space of p-summable functions on Bn. Let L p h(Bn) denote the subspace of harmonic functions on Bn that are p-summable. When n = 2, we often write D instead of B2, and we let A denote the Bergman space of analytic functions in L. Let ω be a function in L. We are interested in finding the best approximation to ω i...

متن کامل

On The Mean Convergence of Biharmonic Functions

Let denote the unit circle in the complex plane. Given a function , one uses t usual (harmonic) Poisson kernel for the unit disk to define the Poisson integral of , namely . Here we consider the biharmonic Poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . We then consider the dilations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Aequationes mathematicae

سال: 2017

ISSN: 0001-9054,1420-8903

DOI: 10.1007/s00010-017-0498-3